-=b

we A&/g«é@ rore

a-Series basic compiler

Programming Manual

Made in Germany

m ABC Programming Manual
for the following products

Family Type

A A3-2, A3, A4, A6, A8/300

A+ A2+, Ad+, A4.3+, A6+, A8+

AXON AXON 1, AXON 2

EOS EOS1, EOS4

EOS2 EOS2, EOS5

HA Hermes A2, Hermes A4, Hermes A5

HC Hermes C6

HQ HERMES Q2, HERMES Q4, HERMES Q4.3, HERMES Q6
H+ Hermes+2, Hermes+4, Hermes+ 4.3, Hermes+6
MACH 4 MACH 4

MACH 4S MACH 4S, MACH 4.3S

PX PX4, PX 4.3, PX6

PXQ PX Q4, PX Q4.3, PX Q6

SQUIX SQUIX 2, SQUIX 4, SQUIX 4.3, SQUIX 6, SQUIX 8
XC XC4, XC6

XcQ XC Q4, XC Q6

XD XD4M, XD4AT

XDQ XD Q4, XD Q4.2

Edition: 04/2024

Copyright

This documentation as well as translation hereof are property of cab Produkttechnik GmbH & Co. KG.

The replication, conversion, duplication or divulgement of the whole manual or parts of it for other intentions than its original
intended purpose demand the previous written authorization by cab.

Trademark

Microsoft® is a registered trademark of the Microsoft Corporation.

Windows® is a registered trademark of the Microsoft Corporation.

TrueType™ is a registered trademark of the Apple Computer, Inc.

Editor
Regarding questions or comments please contact cab Produkttechnik GmbH & Co. KG.

Terms and conditions
Deliveries and performances are effected under the General conditions of sale of cab.

Germany USA Taiwan Singapore

cab Produkttechnik GmbH & Co KG cab Technology, Inc. cab Technology Co., Ltd. cab Singapore Pte. Ltd.
Karlsruhe Chelmsford, MA Taipei Singapore

Phone +49 721 6626 0 Phone +1 978 250 8321 Phone +886 (02) 8227 3966 Phone +65 6931 9099
www.cab.de www.cab.de/us www.cab.de/tw www.cab.de/en

France Mexico China South Africa

cab technologies s.a.r.l. cab Technology, Inc. cab (Shanghai) Trading Co., Ltd. cab Technology (Pty) Ltd.
Niedermodern Juarez Shanghai Randburg

Phone +33 388 722 501 Phone +52 656 682 4301 Phone +86 (021) 6236 3161 Phone +27 11 886 3580
www.cab.fr www.cab.de/es www.cab.de/cn www.cab.de/za

Representatives in other countries on request.

Table of contents

o T LT 1 o 4
[0S} (U3 o] o - O PP 4
OVBIVIBW ...ttt ettt e e e ettt e e e ettt et e e e e s taeeeeeaasseeeeae e e nsbeeeaeeantseeeeeeanssseaaeaansaeeaeeesnssneeaeaannns 4
SCIIPE VS @DC .ttt n 4
REQUITEMENES ...ttt e et s e e e et e e s nr e e e naneeeabreenaes 5
T (4 o3 1T LR PR 5
T W3 o o TR Y oY= PSR 6
PatiIS ... e e e e e e e e e e —a et ee e e e abateeee e e nateeaeeeannaeeaeeaanbeeeeeeaannneeas 6
WINAOW-HANAING ...ttt ettt e bt e ettt e st e e rab e e e et e e enees 7
o] oL 0N/ o [0 P PP PU PR OUPPP PP 7
(V2L e (o =T 1] £ o (o RSP ERPURUPRR 8
WINAOW tranSTer frOMttt e e ettt e e e e et e e e e e snneeeeaeeenes 8
AT a T [T A =Y o I e o S 9
(V2L e (o 1 (N (o SRR PR 9
Lo o= | gV g To [o PRSPPI 10
o310 1=T= AN/ g o o1 SR 10
PEEK VAADIES ..ottt e e ettt e e e e ettt e e e e et e ta e e e e e e ntbeeeeeeaanbaeeeeeeeannreeeeeeaannres 11
POKE VATADIES ...ttt ettt e e e e ettt e e e e e ettt eeeesesbeeeeeeeannteeeeeeanreeeeaeaanes 15
] (Y= 10 PRSPPI 19
Graphical USEr INTEITACEoiiiiii ettt e et 22
(0] o] [=Tox er (=71 1 o] o SRR 22
(0] o] [=Ter i o] o] o 1=T 4 (1= TSR 24
1T oo 1 PR 25
14 F= T o TR 25
Y= o1 £ PSPPI 26
SPECIAI COMMEANGASeiiiiiie ettt e e et e e e et e e e e e e et b ae e e e e e sataeeaeesasbaeeeeesasssaeaaeesnssenaaenan 27
] = 11 TSRS 27
(1] £ PEPPR 28
[[U] D PSSP PR 29
o]0 ST EUPSRR 30
(O 101 (= 0] o] 0 oY= | USSR 31
ON NTEITUPE CONLINUE ..o e e e e e e e e e e e e e e aaaaaeaeeaaaeaeaaaann 32
S T T o SR 33
= T3] o] (=
L1 SR PPUPRRN
0] =1 (=T [N (= RSP UPRRN
Label distanCe MeasUreMENT ittt e et e e e ettt e e e e e e nbe e e e e e eanneeaeeenneeas
Reading Keyboard COUES ...ttt e e et e e e e st e e e s e e e e e e e ennneee
AT gL TR (o JR=T=T 4 = I o o o (PSPPI
Reading and parsing data...........ooeeeiiioii et
Usage of LCD and touch events
(D= e o= KT 07 0] o =Y o (o] L SR
Testing the 1/0 commands With i0.XIiN /0.XOULcuuiiiiiiiiiie e 41
Last printed 1abel @S an iMaAgEeoiiiiii e 43
L SRR 44
HT TP SEIVEI QUETY ...ttt ettt b e et e e e e bt e e ea et e s ne e e e eere e e enbe e e nnreeenaneeean 47
UDP SEIVEI QUETY ... eeeieee ettt e e ettt e e e ettt e e e e e aeeeaeeaaaneeeeaaeeamnseeeaaeaanneeeaeeaaannseeeaaeaannneeeaeeaaansseeaaeaannnes 47
L I 1Y o SRS 48
L O U SR 49
I -/ 50
GEtPIINEIMOTEISB ...ttt ettt et e s e et e e e e saeeeneeeteeesteesnreeres 50
GEECPUTYPES ... ettt ettt e et e et e et e e st e e eae e e be e ssaeebeesabeesseeeateesseeeaseessseenseesnneetes 50
(O oT=T o1 1T o] =Y 51
(O 1T 4 Do - S 51
(O30T I 1Y o] - SR 52
DiSPIAYTEXES ...ttt ettt ettt et e et e be e be et e eae e b e eae e be et e been e eba e beereenbeenreareenns 52
(O] 4 T=T e S = (1 PR 53

PrOMPETEXES ...ttt ettt ettt e et e et e e et e et e e et e e beeeaaeebeeenbeeaaeeenbeeeaeeenteesaeeeneeeaeeas 54

1.1

1.3

Introduction

Instructions
Important information and instructions in this documentation are designated as follows:

Attention!
Draws attention to potential risks of property damage or loss of quality.

Note!
Advices to make work routine easier or on important steps to be carried out.

Handling instruction
Reference to section, position, illustration number or document.
Option (accessories, peripheral equipment, special fittings).

Information in the display.

Overview
» abc is an internal basic compiler which has been implemented for applications which require more
than "only" print commands.

» ltis a command subset from a BASIC programming language called "Yabasic" (at the moment V2.722).
The usage of abc requires good programming knowledge of the programming language BASIC

» Except the restrictions listed later, it is 100% compatible to Yabasic, so you can use the original
binaries to test your programs under Windows or Linux.
> Downloads and documentation from http://www.yabasic.de

» The following description is based on the current firmware release.
We highly recommend to update the firmware first before abc is used!

Attention!

The current firmware release can be downloaded from http://www.cab.de.

» abc works internally with Unicode, so multilingual data processing is no problem for abc programs.

* Running programs can be stopped on the printer by pressing total cancel (pressing CANCEL for more
than 3 seconds on front panel), this can be disabled by ON INTERRUPT command.

« abc can also handle chr$(0) within a string which is interpreted as string end in Yabasic.

JScript vs abc

» abc and JScript work with cooperative multitasking, i.e. a complex JScript command can delay abc
commands and vice versa.

» The content of a file has priority over abc output to JScript.
This way abc cane.g.send"™ 1 1bl;sample" to JScript. However this means that when a file is
executed from card, abc output is delayed until the file has been completely read and closed by JScript!

Note!

To avoid synchronization problems between abc and JScript, it is better and recommended to
embed JScript commands completely into abc!

» To switch off the ESC command interpretation of JScript you can use POKE "transparent™, 0 or 1.
However all data which is already in the input buffer (64 kwords on Ax and X2, variable on others) has
been filtered. So do not send data with ESC in it before the POKE command has been executed!

1.4

1.5

Introduction

Requirements

Running abc needs at least 300 KB of free memory to work smoothly. Parts of this memory are not
being released after finishing the program, so restarting abc is faster.

abc is supported on the following printer families:

Generation Printer Models

Ax A3, A4, A6, A8, Hermes A

X2 A+, MACH4, Hermes+, Hermes C, PX, XC, XD

X3 EOS1, EOS4

X4 SQUIX, MACH 4S, EOS2, EOS5, HERMES Q, PX Q, AXON, XC Q, XD Q

Restrictions

No mouse functions (touch coordinates on touch printers are mapped to MOUSEX and MOUSEY
commands)

No PRINT AT.

No COMPILE, no libraries.

No BEEP and BELL.

No CIRCLE command.

No BITBLT, GETBIT$ and so on.

No SYSTEM$() function.

WINDOW ORIGIN is not supported, i.e. the origin 0,0 is always in the upper left corner.

Window functions work differently (no single window on big screen, but mapping of window to LCD
possible)

21

Instruction types

Paths

When accessing or using files, an optional path where the file is located can be used.
If the path is missing, the default location specified in printer setup will be used.

Syntax:

[/path/]filename.ext

Possible paths:

[/path/] optional path name where the file is located

filename.ext | name and extension of the file

Compatibility

Path name Description Ax | X2 | X3 | X4
card Default memory slot specified in printer setup H H H B
ct Compact Flash card b - -
cfext Compact Flash card in external control panel Hn u| -

iffs Internal memory (Internal File Flash System) -/ 0
pccard PCMCIA card N - -
pics Used for GUI operations to use standard icons and pictures | - - - ||
sd SD Card - - -
temp Temporary path. Files in this folder are deleted after printer - - -l

restart

usbmem USB Stick N BN NN
webdav WebDAV folder specified in printer setup - - - |

2.2

221

Instruction types

Window-Handling

abc uses a hidden window which can be (partially) mapped to the front panel LCD.

The printer handles the window as a bitmap with 8 bit indexed colors. So each dot can have a value of
0 (black) to 255 (white). During mapping to the LCD, each color is mapped according to its brightness

which is predefined as grayscales, i.e. 128 to 255 gives white pixels, 0 to 127 black pixels.

The mapping can be changed with the POKE command to RGB colors which are useful if you want to

write the graphic to the card.

open window

Generation Ax X2 X3 X4
Compatibility u u u u
LCD size 120x32 128x64 160x255 272x480
or
480x272
Syntax: open window width, height
width width of the window to open (in pixels)
height height of the window to open (in pixels)

Opens a window, only one is allowed.

As this window is stored internally in standard memory, define it only the size you really need.
E.g. a window 100,100 takes 10 KB memory.

There is only one font (16 dots high), variable width with support of Latin, Greek, Cyrillic, Hebrew and
Arabic scripts. The origin is in the upper left corner of the first character's bounding box. For right-to-left
writing countries, the origin is in the upper right corner.

When a window is opened, it should also be closed before exiting the program [> 2.2.7 page 10.

<anc>

open window 128, 64

poke "lcd", 1

text 0, 0, "this is a test"
wait 3

close window

</ABC>

] 2 Instruction types

2.2.2 window transfer to

Generation Ax X2 X3 X4
Compatibility u] [| [|
Syntax: window transfer to "name"

name name of the file

Transfers the window content to a JScript image "name" which can be used e.g. with the | command.

2.2.3 window transfer from

Generation Ax X2 X3 X4
Compatibility u u u u
Syntax: window transfer from "name"

name name of the file

Loads the window with a JScript image. If the window and image size are not identical the result is clipped.

<ancs

image$ = "BLUBBER"
print "M 1 IMG;/iffs/" + image$
wait 1

open window 128, 120
window transfer from image$
poke "lcd", 1

wait 5

close window

</ABC>

224

2.2.5

Instruction types

window read from

Generation Ax X2 X3 X4
Compatibility u] [| [|
Syntax: window read from "name"

Loads a PNG file into the actual window. Path names are allowed here. > 2.1 page 6

name name of the file

The window has to be big enough to hold the image, else loading will fail!
Supported formats are:

» grayscale 1 to 8 bits per pixel

» paletted images 8 bits per pixel.

<ABC>

open window 272,
poke "lcd", 1
window read from "cablogo"
pause 4

close window

</ABC>

480

window write to

Generation Ax X2 X3 X4
Compatibility u] [| [|
Syntax: window write to "name"

name name of the file

Saves the actual window as a PNG file on the memory card.

<ABC>

open window 128, 64

poke "lcd", 1

text 0, 0, "this is a test"
window write to "/sd/test"
wait 3

close window

</ABC>

2.2.6

2.2.7

Instruction types

clear window

Generation Ax X2 X3 X4
Compatibility u] [|]
Syntax: | ‘ clear window

Erases the content of the opened window.

<anc>

open window 128, 64

poke "lcd", 1

text 0, 0, "this is a test"
wait 3

clear window

text 0, 0, "text erased"
close window

</ABC>

close window

Generation Ax X2 X3 X4
Compatibility u] [|]
Syntax: | ‘ close window

Closes the window opened with the function open window.

cancs

open window 128, 64

poke "lcd", 1

text 0, 0, "this is a test"
wait 3

close window

</ABC>

23

Instruction types

Peek variables

The peek function is an output function which returns information about the printer, the printing process...
The return value can be a string, an integer or a float depending on the command.

Syntax: peek (" command") if the result type is an integer or a float
peek$ ("command") if the result type is a string
command | command from the list below

Command

Type

Description

Compatibility

AXx

X2

X3

X4

direction

int

Direction of paper movement
-1: backward

0: standing

1 forward

firmware

string

Returns the firmware version of the machine.
E.g. "V3.37 (Jul 10 2014)"

freememory

int

Returns the free main memory in bytes
(available for abc or JScript)

imageheight: name

int

Returns the height of the image "name" in dots
0 if not known

imagewidth:name

int

Returns the width of the image "name" in dots
0 if not known

http.rc

int

Return code of HTTP request

Negative return codes correspond to libcurl error
codes preceded by a minus sign.

Positive values correspond to the HTTP status
codes sent by the server, e.g. 200 for OK or 404 for
NOT FOUND.

io.xin

string

Returns the state of the inputs of I/O Interface.
Responds string is on 10 digits, for example:
NNNYNNNNNNN

N = not activated

Y = activated

Signal order is following:

START, REPRINT, STOP, RSTERR, JOBDEL,
LBLREM, PAUSE, FSTLBL, LBLROT, LBLFEED
START signal stays only activated for 40 ms

io.xout

string

Returns the state of the outputs of 1/O Interface.
Same as ESCxout with additional synchronization
status (paper synchronized)

Responds string is on 12 digits, for example:
NNNYNNNNNNNY

N = not activated

Y = activated

Signal order is following:

READY, JOBRDY, FEEDON, ERROR, RIBWARN,
PEELPOS, HOMEPOS, ENDPOS, LBLWARN,
RIBERR, MEDERR, PAPERSYNC

iobox

int

Returns the input state of the /O box on USB.
Input data is binary ORed, values ranging from
1 for input 1 to 8 for input 4.

-1 if not available

__12p

Instruction types

Command

Type

Description

Compatibility

AXx

X2

X3

X4

jphase

int

Returns the phase of JScript-Interpreter:

0: waiting for label definition

1 in process of label definition

2 during printing

3: standby, waiting for new job or new data for
old one

lcd orientation

int

Returns the orientation (in degrees) of the printer's
display.

lcd resolution

string

Returns the resolution in pixel of the printer's display.

E.g. "272x480" or "480x272" when rotated by 90 or
270°

line

int

Returns the number of the last printed label

machine

string

Returns the type and name of the printer.
E.g. "A4+/300"

manufacturer

string

Returns the manufacturer of the machine.
E.g. "cab"

mlength

float

Returns the measured length of the last label
distance (in mm)
0 if not known

opcuax:y

int
string

) slot value from 0 to 4 (O if not specified)
y node ID or node name

Returns the value from node ID or node name as
an integer or a string

> 3.15 page 50

opcuaXx.rc

int
string

X slot value from 0 to 4 (O if not specified)
Returns the error code as an integer value
Returns the error code as a string value
List of error codes:

0 ok

100 invalid url

101 invalid object path

102 connect failure

140 node not found

150 failed to read

151 not a scalar value

152 value type unsupported

153 not a method node

154 method incompatible

155 access denied

oS

string

Returns "cab A-Series" or "cab EOS"
only for compatibility with Yabasic

peelmodule.
sensorstate

int

Get the state of peel sensor.
1 label is in peel sensor
-1 not available

peelpos

int

Returns 1 if the label is in peel-off position

peri

string

Returns the name of the peripheral.
Same as JScript "q p" command

read controls

int

Returns the state of "read controls"
> read controls page 17

resolution

float

Returns the resolution of the printer (in dpi)

Instruction types

Compatibility
Command Type | Description Ax | X2 | X3 | X4
rfid rssi int Returns the signal quality of a detected RFID tag. " B - -
Range is 0 to 100.
sec’0 int Returns the time in unix format - i.e. secondssince | ® | B | B | B
Jan 1, 1970
serial string | Returns the serial number of the PCB " R = BN
slength float | Returns the stored label distance (in mm). E = =
0 if not known or invalid.
This is effectively the distance of the last defined
label before being switched off
source string | Returns the name of last data source: " ® BN
"RS232"
"RS422"
"RS485"
"IEEE1284"
"RAWIP"
IIUSBII
IIFTPII
IILPDII
IIABCII
"SOAP"
"BLUETOOTH"
"UNKNOWN"
status string | Returns the state of the printer. " =B BN
Same as ESCs answer string
ticks int Returns the timer tick since startup of printer in H | ®H B =
1/128" seconds
user string | Returns the content of the non-volatile user space - HE | E =
version float | Returns the version of Yabasic " ®E =
width float | Returns the maximum print width (in mm) " B ® B
winf string | Returns the content of the WINF buffer. E B ® =
Same as ESCi command
xinput int Returns the status of the peripheral connectorinput | B | & - u
pin (XSTART)
xoutput int Reads the actual peripheral control bits " - =
xstatus string | Returns the extended state of the printer. HE | E B =

Same as ESCz answer string, but without CR

I 2 Instruction types

<anc>

print "m m"
print "zO"
print "J"

print "S 11;0,0,48,51,90"
print "H 100,0,T,R0,BO"

print "O R,P"

print "T3,4,0,5
print "T4,8,0,3
print "T4,12,0,
print "T4,16,0,
print "T4,20,0,
print "T4,24,0,

,3,b,k;Peek samples"

2.5,k
3
3
3
3

print "T4,28,0,3,
3
3
3
3
3

,k;0S: ", peek$ ("os")
.5,k;Version: ", peek("version")
.5,k;Manufacturer: ", peek$ ("manufacturer")
.5,k;Machine: ", peek$ ("machine")
.5,k;Serial: ", peek$ ("serial")
.5,k;Firmware: ", peek$ ("firmware")
o9, kg i
.5,k
.5,k
.5,k
.5,k

’;U
[0
[0}
O
=
[
=
b
O
=

print "T4,32,0,
print "T4,36,0,
print "T4,40,0,
print "T4,44,0,
print "T45,8,0,3,
print "T45,12,0,3
print "T45,16,0,3
print "T45,20,0,3
print "T45,24,0,3
print "T45,28,0,3,

0,3

0,3

0,3

0,3

", peek ("resolution")

;Max width: ", peek ("width")

;LCD orientation: ", peek("lcd orientation")

;LCD resolution: ", peek$("lcd resolution")

;k;Line: ", peek("line")
.5,k;Mlength: ", peek("mlength")
.5,k;Direction: ", peek ("direction")
.5,k;Slength: ", peek("slength")
.5,k;Free memory: ", peek ("freememory")

.5,k;Status: ", peek$ ("status")

print "T45,32, 255 IR

print "T45, 36, .5,k

print "T45, 40, 255 IR

print "T45, 44, .5,k

print "A 1"

</ABC>

;XStatus: ", peek$ ("xstatus")
;Source: ", peek$ ("source")
;Peripheral: ", peek$ ("peri")
;XInput: ", peek ("xinput")

[\)[\)l\)[\)l\)l\)l\)[\)[\)

Instruction types

Poke variables

The poke function is an input function which sets settings on the printer.

| Syntax: | poke "command", params
command | command from the list below
pbarams optional parameter(s) depending on the used command
Compatibility
Command Type | Description Ax | X2 | X3 | X4
abort int Simulates pressing CANCEL/ABORT - - - |
Stops abc program
backlight int Controls the back-light of the LCD if "lcd" is 1. " = - -
0 off
1 on
2 controlled by JScript (default)
bcolor int Sets the background color for abc window operations | ® | B | B | B
bypass int 0 prevents data from interfacestogo directy ¥ ® | B | B | H
to JScript
1 allows data from interfaces to go directly to
JScript
cancel int Deletes actual print job (same as ESCc command) - - - | n
color#x int Sets the RGB value for color #x. " = B
x is valid from 1 to 254.
Color 0 (black) and 255 (white) cannot be modified
fcolor int Sets the foreground color for abc window operatons | @ | B | ® | B
feed int Simulates pressing FEED - - - | n
gui.peributton int Simulates pressing peripheral button - - - | n
http.auth string | Authentication mode for HTTP connection - - - | n
Valid values are: Basic, Digest or empty string (no
authentication method)
http.header int Response stream should contain the response - - - u
headers@
Valid values: 0 or 1
http.header string | Specify additional header for request - - - | n
<header_field>: <header_field_value>
empty string use standard header
http.method string | HTTP request method - - -
Valid values: GET, POST, PUT, DELETE
http.proxy string | Specify a proxy server for the HTTP connection - - - |
<host>:<port>
http.store string | Write received data to the specified file instead - - - | n
of making it available via the input stream. Data
is written in binary, i.e. without any character
conversion.
[/path/Jfilename.ext
http.userpwd string | If http.auth is set, this field must contain the - - - | m
username and password
<username>:<password>

T 2 Instruction types

Compatibility
Command Type | Description Ax | X2 | X3 | X4

httpswap string | Can be used to swap the normal root directoryand | ® | B | - -
the memory card on the webserver.

E.g. poke "httpswap", "/secret" moves the
applet to /secret/index.htm and /card/index.htm to
/index.htm

io.xin string | Sets input signals of I/O Interface. - - - |
Same tokens as ESCxin
FSTLBL print first label

only when Cycle sequence = Apply-Print
JOBDEL cancel print job
LBLFEED feeds a label
LBLREM label removed
REPRINT reprints the last label
RSTERR resets the error state of the printer
START start signal

only when Print on demand = On

STOP stop signal to interrupt operation
PAUSE=x x = 0: pause off
x = 1: pause on
LBLROT=x x = 0: labelling with primary orientation
e.g.0°
x = 1: labelling with secondary orientation
e.g. 90°

only with applicators with variable
labelling orientation

io.xin.mask

iobox int Sets the output state of the I1/O box on USB. H | ®E §® =
Returns an error if not available.

Output data is binary ORed, values ranging from 1
for output 1 to 8 for output 4

key int Puts a character into the key buffer.

E.g. poke "key", dec("F001") simulates

pressing the MODE key.

dec("F001") MODE (Ax) or MENU (X2) key

dec("F002") FEED key

dec("F003") CANCEL key

dec("F004") PAUSE key

dec("F090") CANCEL longer than 3 seconds
(total cancel)

THE § B
§ 2 g

dec("F100") ENTER key - [] - -
dec("F101") ENTER key longer than 2 seconds - - -
lcd int Controls the source for the LCD. L NN - -
0 standard, JScript content
1 abc window
lcdx, lcdy int Offset for the LCD in the abc window. [DI BN BN

Works only if the window is bigger than the LCD.

2 Instruction types

Command

Type

Description

Compatibility

AXx

X2

X3

X4

led

int

Controls the state of the front panel LEDs, if "lcd" is 1.
Bit coded:

1 Cancel (Ax), Menu (X2)
2 Mode (Ax),

4 Feed

8 Pause

16 Arrows (Ax), Enter (X2)
32 Up arrow (X2)

64 Left arrow (X2)

128 Right arrow (X2)

256 Down arrow (X2)

ledmask

int

Masks the LEDs to be lit. Independent of "lcd"-value.
Same bit coding as "1ed".
0 Masks the respective LED

nice

int

Sets the multitasking priority of abc vs. JScript.
Ranges from 1 (JScript fast) to 20 (abc fast).
Default is 10.

opcuax:y

int
string

X slot value from 0 to 4 (0 if not specified)
y node ID or node name

Writes a value to node ID or node name.

Value can be an integer or a string

> 3.15 page 50

opcuax.rc

int

) slot value from 0 to 4 (O if not specified)
Error code handling.

If not activated, OPC-UA peek functions with errors
will cause the script to fail.

When activated the result of the operation is
received as a result code that can be processed.

0 disable result code handling

1 enable result code handling

opcuax.url

string

X slot value from 0 to 4 (O if not specified)
Specify OPC url and port
<host>:<port>

opcuax.userpwd

string

X slot value from 0 to 4 (0 if not specified)
Specify OPC access parameters
<user>:<password>

pause

int

Simulates pressing PAUSE
0 Pause OFF
1 Pause ON

print with verify

int

Controls the usage of a barcode scanner by the
print engine of an enabled machine. Set to 1 for the
print engine to wait for "scanresult" after each label

read controls

int

Value: 0 or 1.

1 allows control characters to pass threw INPUT or
INKEY$. All characters are passed to abc, including
the character terminating the input line (e.g. CR).
(This CR can be removed e.g. with TRIM$)

BT 2

Instruction types

Command

Type

Description

Compatibility

Ax | X2 | X3 | X4

scanresult

int

Sets the result of the barcode verification scan:
1 Good, apply the label
2 Bad, display error
(depending on user decision on front panel
reprint will occur or not)
3 Bad, keep label on liner (reprint will occur)
4 Bad, put label in recycle position
(if hardware available, reprint will occur)
5 Bad, put label on product (reprint will occur)
3+8 Bad, keep label on liner (no reprint)
4+8 Bad, put label in recycle position
(if hardware available, no reprint)
5+8 Bad, put label on product (no reprint)

stdout

string

Outputs to systemlog

syserror

string

Puts the first character of the string into the error
message buffer. Allowed characters are the same
as in the ESCs response.

Message will be shown when motor is not moving

transparent

int

0 switches ON ESC-command interpretation
1 switches OFF ESC-command interpretation

user

string

Writes a value into the non-volatile user space.
Max. 31 UTF-8 characters are allowed

usererror

string

Similar to syserror but with custom error string

wakeup

int

Wakes the printer resp. prevents it from falling asleep

widget

string

Puts text into abc debug widget.
Up to 4 printable characters.
Only digits and upper case letters are allowed

winf

string

Writes a value into the "winf" buffer

xinput

int

Triggers the print of label (analog to start input
signal) on supported hardware

xoutput

int

Status of the peripheral connector control bits (output)
Note: you have to set the peripheral mask to O
(x m command) before!

xstart

int

Same as xinput

<ABC>

poke ("cancel"), 1

</ABC>

Instruction types

Streams

» Writing to an interface (e.g. /dev/rs232) will fail if the printer cannot send the data.
There's a timeout of 10 seconds.

* Opening an interface as file stops ESC interpretation on this device.

» abc has an additional command which enables you to clear the input buffer of streams in read mode
> 2.7.3 page 30

« abc has an additional command to erase files [> 2.7.1 page 28

- /dev/keyboard works only if a window is opened and displayed, some keycodes have changed
compared to old printers

» No random writing within a file, only append or overwriting,

» According to the filename extension the files are automatically sorted into the appropriate directories
(i.e. /images, /labels, /fonts and /misc) on the memory

| Syntax: | open id, "streamname", "mode"
id unique identifier (integer value)
streamname | command from the list below
mode mode from the list below
Compatibility
Stream name Type | Description Possible values Ax | X2 | X3 | X4
/dev/rs232: /10 Serial, RS-232 interface H H H BN
baud, 8 bits | baud 1200-230400
handshake, handshake ---, RTS/CTS, XON/XOFF
parity, parity N, E, O
stopbits Stopbits 1,2
/dev/ieeel284 I/0 Bidirectional parallel interface H | N - -
8 bits
/dev/rsd22: 110 RS-422 interface Hn N - -
baud, 8 bits | baud 1200-230400
handshake handshake ---, RTS/CTS, XON/XOFF
/dev/rs485: I{e] RS-485 interface N - -
baud, 8 bits | baud 1200-230400
address address A-Z
/dev/usb I/0 USB slave H H EH B
8 bits
/dev/rawip I/0 Raw-IP Socket Server H E B N
8 bits
/dev/lpr I LPD Server HE H E BN
8 bits
/dev/panel I Input from front panel keys, key values are:

16 bits | $F001 Mode N - -
$F002 Form feed | H | - -
$F003 Cancel N - -
$F004 Pause | H | - -
$F090 Cancel longer than 3 seconds | - -
$F100 Enter - - -
$F101 Enter longer than 2 seconds - m| - -

/dev/keyboard | Input from external keyboard HE HE E B

16 bits | There are too many key codes to list them here.

You can use following example > 3.4 page 36

__20p

Instruction types

Stream name

Type

Description Possible values

Compatibility

AXx

X2

X3

X4

/dev/jscript

I
16 bits

JScript interpreter - needed for reading back
answers

[/path/]

filename.ext

I/O*
8/16
bits

File from memory.
[/path/] Optional path > 2.1 page 6
filename.ext Name of the file

bitmap:

O
8 bits

Last printed label as PNG file
Note: a label must have been previously printed
after the printer was powered on.

http://url[:port]
https://url[:port]

I/0
16 bits

HTTP/HTTPS request
url Address of website
[:port] Optional port used on website

mailto:address

(0]
8 bits

Writes an email to the specified address.

A SMTP-Server address and a return address have
to be set in the setup!

The subject is the first line printed into the stream.

sql:ip,port

I/0
16 bits

Database Connector, always Unicode

ip IP address of the DBC server
port Port used for DBC (default: 1001)
You have to open two streams, one for reading, one
for writing. After printing the SQL query, you have

to input the result, even if you don't need them, e.g.
after INSERT. The query is sent at the moment to
do the first INPUT on the reading stream.

sglite: [/path/]
filename.ext

I/0
16 bits

Same as Database Connector but for SQLite and
a local database.

[/path/] Optional path > 2.1 page 6
filename.ext SQLite Database filename

tcp:ip,port

I/0
16 bits

TCP client only send and receive.

Only binary data. Since TCP is a stream,

data is also read in the same way. There is no
synchronization between the streams such as with
the SQL Connector (=> flush when reading).
However, only one socket is used for the
connection. This means that only one connection is
possible to an end point at a time.

> 3.12 page 48

udp:ip,port

I/0
16 bits

UDP for sending and receiving data.

To enable bidirectional communication, a client
socket (for writing) and a server socket (for reading)
are implemented. Each API call creates its own
UDP datagram. Therefore, the print function without
a semicolon may result in undesirable behavior (the
text and the automatically inserted newline are sent
in two separate datagrams) [> 3.13 page 48

2 Instruction types

Compatibility
Mode Description Ax | X2 | X3 | X4
r Read H H H B

Opens the stream for reading

File reading and writing automatically transforms
Unicode to ASCII and vice versa according to
selected codepage, reading an Unicode or ASCII
file is automatically detected

w Write H E EH BN
Opens the stream for writing

File reading and writing automatically transforms
Unicode to ASCII and vice versa according to
selected codepage, reading an Unicode or ASCII
file is automatically detected

a Append HE B B N
Opens the stream for appending
rb Read Binary H H B B

Opens the stream for reading without transforming.
File reading and writing uses only low-byte of e.g.
string

wb Write Binary H H H B
Opens the stream for writing without transforming
File reading and writing uses only low-byte of e.g.

string

ab Append Binary H B B B
Opens the stream for appending without transforming

wu Write Unicode H B B BN
Opens the stream for writing using Unicode

au Append Unicode H H H BN

Opens the stream for appending using Unicode

<anc>

a$ = "Hello " + chr$ (dec("20AC"))
open 1,"test.dat","w"
print #1 a$

close 1

open 1,"testu.dat","wu"
print #1 a$

close 1

open 1,"testb.dat","wb"
print #1 a$

close 1

</ABC>

This example demonstrates the differences for file handling. Connect the memory card/USB drive to your
computer and use a hex editor to see the different results.

2.6

2.6.1

Instruction types

Graphical User Interface

Generation

Ax

X2 X3 X4

Compatibility

The following graphical user interface (GUI) elements are supported:
Text buttons

Image buttons

Labels (for texts or images)

Line edits

Combo boxes
Check boxes
Default buttons (in the design of the printer)

Movies

In addition, ready-made cab editors can be used as dialogs in full-screen mode such as:

fileopen
numeric
dates
time
info
confirm

Object creation

To create GUI elements in abc, a poke command is issued with the following syntax for name and value:

Syntax:

poke "gui.Objecttype.add", "Objectname,Objectparams"

Objecttype Type of GUI element from the list below
Objectname Unique name of the element
Objectparams Parameters of the element from the list below

The object properties depend on the object type.

Note!

The object name can only contain lowercase letters a-z, digits 0-9 or underscore _.
Capital letters are not possible, since the object names are also used as part of peek and poke commands,
which are always converted to lower case by abc.

Object type | Object parameter | Description

button x-pos, Button which can be pressed on touch-display.
y~pos, Buttons can also host images. The image property can be set later.
Eéf;ié, Note: in contrast to the label, the size of the image remains

caption

unchanged.

2

Instruction types

Object type | Object parameter | Description
label X-pos, Labels can also host images. To do this, leave the label blank (the
y-pos, comma must also be omitted in this case) and set the image
width, property later.
helg}?t' Note: the size of the displayed pixmap is adapted to the size of the
caption label while maintaining the aspect ratio (smooth transformation,
non-expanding).
lineedit x-pos, Edit field which can be operated via keyboard.
Yfz‘éi' A virtual keyboard is displayed when you click on the lineedit.
Wl ,
height, The (predefined) content is displayed by the lineedit.
content
combobox X-pos, The object of type combobox is filled with the given elements.
y-pos, Elements are separated by commas, i.e. the comma itself cannot
width, appear in the text of an element (no escaping possible).
height,
elementl,
element?2,
elementX
checkbox X-pos, Checkboxes have a default height, so there is no width and height.
y-pos, Also, checkboxes do not contain any text description. This must be
CheckState 011 done via a label object.
pixbutton |x-pos, Size refers to the width of the generated button.
y-pos, Possible values are: tiny, small, mediumor large.
S1z&, Buttons can currently be of type: back, cancel, feed, help,
type minus, next, ok, pause, plus, setup, start, stop, trigger.
The matching icons are available in every size and are loaded from
the default location of the printer icons.
If you want to use your own icons on buttons, you should switch to
the general button type.
movie X-pos, Movie object is an animated GIF file.
y~Pos, The image is automatically scaled in width and height.
width,
height

High-level GUI elements can no longer be deleted but are automatically discarded when the abc window
is closed. The object name is then used for referencing during event processing or for reading or setting
object properties.

g2 2 Instruction types

2.6.2 Object properties
Object properties are referenced via the object name and are basically accessible via the syntax below.

To set a property:

Syntax: poke "gui.Objectname.Property", IntegerValue
poke "gui.Objectname.Property", "StringValue"
Objectname Unique name of the element
Property Property from the list below
IntegerValue Value of type integer
StringValue Value of type string

To read a property:

Syntax: val = peek ("gui.Objectname.property")
val$ = peek$ ("gui.Objectname.property")
Objectname unigue name of the element
Property Property from the list below

Typical for Basic, a distinction is made between string and integer properties. The available properties
depend on the object type.

Property |Type | Mode | For objecttype |Value Description
checked |int Read / | checkbox 0 Checkbox is unchecked
Write 1 Checkbox is checked
enabled |int Read/ |all 0 Object is disabled
Write 1 Object is enabled
focus int Write lineedit 0 Hide focus
1 Set focus
image string | Write button Virtual path to an image on the file system,
label e.g. /IFFS/images/my.png
On buttons, the image is placed in addition
to the text
mask string | Write lineedit Specification of an input mask, definition as
for JScript input command
numeric |int Write lineedit 0 Display a standard keyboard
1 Display a numeric keyboard only
pixmap string | Write pixbutton back Change button type
cancel
feed
help
minus
next
ok
pause
plus
setup
start
stop
trigger

Instruction types

Property |Type | Mode | For objecttype |Value Description
text string | Read / | button Text assigned to the object type
Write combobox For a combo box: comma-separated string
I'abel _ list which makes it possible to reinitialize the
lineedit selection list
visible |int Read/ |all 0 Hide the object
Write 1 Show the object

The properties checked, enabled, text and visible can be queried from abc via peek.

poke "gui.my checkbox.checked", 1

poke "gui.my combobox.text", "a,new,choice"

poke "gui.my combobox.text", "New"

gL 2 Instruction types

2.6.3 Dialogs

The abc interface supports the possibility to open modal dialogs.

| Syntax: |

poke ("gui.Dialogclass.show"), "Caption,Dialogparams"

Dialogclass Type of dialog from the list below
Caption Text displayed at the top of the dialog (title)
Dialogparams Parameters of the dialog from the list below

Only one dialog can be opened at a time. A DialogClosed event is received via the event interface as
soon as the dialog has been closed successfully or through cancellation.

The following dialog classes are available.

Dialog class

Dialog parameter

Description

fileopen

subpath
[,fileextension]

Displays a file selection dialog.
Same dialog as pressing Menu => Storage => Load label

subpath is one of the following path: labels, images, fonts, misc.
fileextention is the extension of the file
If no file extension is specified, a wildcard (*) is set.

numeric

Value,
Min,
Max,
Step,
Digits
[,Unit]

Displays a numerical selection slider dialog
(same as in Menu => Setup => Printing => Print position X)

date

Day.Month.Year

Displays a date calendar dialog
(same as in Menu => Setup => Time => Date)

time

Hour:Minute

Displays a time dialog
(same as in Menu => Setup => Time => Time)

info

Displaytext

Displays an information dialog
(same as in Menu => Information)

confirm

1. Buttontext,
[2. Buttontext,]
Dialogtext

Displays a confirmation dialog

2.6.4 Images

The pseudo-path /PICS can be used to display standard icons and pictures from printer.
Available pictures/icons are: background, 1logo, back, next, home.

2 Instruction types

2.6.5 Events
Events of the GUI objects can be polled with the help of the peek gui.event command.

Syntax: | ‘ peek$ ("gui.event")

If no events are available at the time of the call, the peek command returns with an empty string.

Alternatively, a string of the form objectname:eventclass:eventproperties is returned.
The object name is the name given when the element was instantiated. The possible event class depends
on the object type.

Event class Event parameter | For object type | Description
Clicked - button Triggered when the button is
pixbutton pressed
TextChanged NewText combobox Triggered when the text changed
lineedit
Checked 0 checkbox Triggered when the checkbox is
1 checked/unchecked
ReturnPressed - lineedit Triggered when the return key is
pressed in the keyboard dialog
OnScreenKeyboardVisible | O:cancel lineedit
0:0k
1
DialogClosed ok dialogs Triggered when the dialog is closed

fail

g 2 Instruction types

2.7 Special commands

271 Erase

Generation Ax X2 X3 X4

Compatibility u] [| [|

Syntax: erase " [path]name.ext"
[path] Optional parameter to select the pathname where the files are located

> 2.1 page 6

name File name of the file on memory card
ext Extension of file

Deletes a file on a memory card.

The path is optional, if it is not specified the default memory selected in the printer setup menu will be
used to search for the file.

If the file is not found, an error message will be displayed.

<anc>

erase "Etigl.lbl"
erase "/iffs/Etig2.1bl"
</ABC>

2 Instruction types

2.7.2 Exists

Generation Ax X2 X3 X4

Compatibility u] [| [|

Syntax: exists " [/path/]name.ext"
[/path/] | Optional parameter to select the pathname where the files are located

> 2.1 page 6

name Filename of the file on memory card or stream name
ext Extension of file (if a filename is specified)

Checks for the existence of files on a memory card or devices available on printer.

The path is optional, if it is not specified the default memory selected in the printer setup menu will be
used to search for the file.

If the file is not found, an error message will be displayed.

<anc>

open window 272, 480
poke "lcd", 1

if exists("/dev/rawip") then
text 0, 0, "RAWIP exists!"
else
text 0, 0, "RAWIP not found!"
endif
if exists("/sd/labell.lbl") then
text 0, 20, "Labell exists!"
else
text 0, 20, "Labell not found!"
endif
wait 3
poke "lcd", O
close window
</ABC>

ED] 2 Instruction types

2.7.3 Flush
Generation Ax X2 X3 X4
Compatibility u | u u
Syntax: flush #id

id unique identifier (integer value) of the stream to clear

Clears the input buffer of /dev-streams in read mode.
flush #0 clears standard input.

<anc>

open 1,"/dev/jscript","r"
open 2,"/dev/rs232","w"
print "gm"

line input #1 a$

print #2 a$

close 2

close 1

flush #0

print "f"

</ABC>

2 Instruction types

2.7.4 Font
Generation Ax X2 X3 X4
Compatibility - - u u
Syntax: font "name,size"
name name of the font
size size of the font (in pixels)

Changes the font used to display texts on the printer's display.

<anc>

open window 272, 480
font "Swiss, 10"

text 0,0, "Swiss"
font "Swiss, 20"

text 0,20, "Swiss"
font "Swiss, 30"

text 0,50, "Swiss"
font "Swiss, 40"

text 0,90, "Swiss"
font "Swiss Bold, 40"
text 0,130, "Swiss"
font "Monospace, 15"
text 80,20, "Monospace"
font "Monospace, 25"
text 80,40, "Monospace"
font "Default"

text 80,0, "Default"
poke "lcd", 1

pause 5

poke "lcd", O

close window

</ABC>

EH] 2 Instruction types

2.7.5 On interrupt break

Generation Ax X2 X3 X4
Compatibility - - - [
Syntax: | ‘on interrupt break

<anc>

on interrupt continue
poke "bypass", 1
open 1,"/dev/keyboard","r"
open window 120,50
poke ("lcd"),1
do
do
k = peek (#1)
if k <> -1 then
on interrupt break
poke ("abort"), 1
endif

a$ = jget$
if a$ <> "" break
loop

clear fill rectangle 10,10 to 20,60
text 10,10,a$

b$ = " o4 a$ 4+ nyw
jput b$
pause 1

loop

</ABC>

e;0,0,30,32,100

50,0,T
:text;10,10,0,3,5; [SER:1]
10,20,0,3,5; [ABC: text]

5

> HHamn g

2 Instruction types

2.7.6 On interrupt continue

Generation Ax X2 X3 X4
Compatibility - - - [
Syntax: | ‘on interrupt continue

<anc>

on interrupt continue
poke "bypass", 1
open 1,"/dev/keyboard","r"
open window 120,50
poke ("lcd"),1
do
do
k = peek (#1)
if k <> -1 then
on interrupt break
poke ("abort"), 1
endif

a$ = jget$
if a$ <> "" break
loop

clear fill rectangle 10,10 to 20,60
text 10,10,a$

b$ = " 4 a$ 4+ nyn
jput b$
pause 1

loop

</ABC>

e;0,0,30,32,100

50,0,T
:text;10,10,0,3,5; [SER:1]
10,20,0,3,5; [ABC: text]

5

> Hamn g

2.1.7

Instruction types

Sound
Generation Ax X2 X3 X4
Compatibility -] [| -
Syntax: sound "soundname"

soundname

name of the sound to play

Possible values:
Beep
Bicycle
Chime
Comic
Ding

Frog
Rooster
Synthesizer
Tribble
Weep
Whistle

Plays a sound using the printer buzzer.

<anc>

sound ("Beep"

)

sound ("Rooster")

</ABC>

3 Examples

3.1 Ruler

Small program to print a 100 mm long ruler with 1 mm markings on a label of size 104x68 mm.

<ABC>

' Test label for ruler
print "m m"

print "J"

print "S 11;0,0,68,71,104"
print "G 0,10,0;L:100, .1"

for x = 0 to 100

if mod(x,10) = 0 then
print "G ",x,",10,270;L:4, .1"
else
print "G ",x,",10,270;L:2, .1"
endif
next x
print "A 1"
</ABC>

3.2 Rotated text

Small program to print a text in a circle.

<ABC>
' Test label for rotated text
print "m m"
print "J"
print "S 11;0,0,68,71,104"
a$ = "Rotated text with Euro sign: " + chr$(dec("20AC")) + " "
n = len(a$)
d = 360/n
for i = 1 ton

4 ((1-1)*d)/180*pi

X 50-25*cos (w)

y = 30-25*sin (w)

r = 90-(i-1)*d

if r < 0

r = r + 360

print "T ",x,",",yv,",",,",3,6,b;" + mid$ (a$, i, 1)
next i
print "T 0,30,0,3,5;[J:cl00]" + date$
print "T 0,38,0,3,5;[J:cl00]" + time$
print "A 1"
</ABC>

E 3 Examples

3.3 Label distance measurement

Small program for measuring the distance between two label edges.

<ABC>
repeat

'read measured length

dy = peek ("mlength")

if dy > 0

break

print "f"

wait 0.25

'wait until standing again REPEAT
until (peek ("direction")=0)
print "m m"
print "J"
print "O R"
print "s 11;0,0,",dy-2,",",dy,",100"
print "T 0,10,0,3,5;Measured distance: ", dy, " mm"
print "A 1"
</ABC>

3.4 Reading keyboard codes

This program reads keyboard codes and displays the values on the printer's display.

<ABC>

open 1, "/dev/keyboard", "r"
open window 120,32

poke "lcd", 1

do
do
x = peek (#1)
if x <> -1
break
loop
clear window
text 0, 0, "Last character:"
text 0, 16, "S$" + hex$(x)+" = " + chr$ (x)
loop
close window
</ABC>

3.5 Writing to serial port

This program writes some data on the RS-232 port.

<ABC>
a$ = "Hello " + chr$(dec("20AC"))
open 1, "/dev/rs232:57600,RTS/CTS", "w"
print #1 a$, chr$(13);
for i = 1 to 10
print #1 i, chr$(13);
next i
close 1
</ABC>

Examples

Reading and parsing data

Simple program to show the capture of interface data, parsing it, extracting the data and sending it forward to the
JScript interpreter.

<ABC>

print "m m"

print "J"

print "S 11;0,0,68,71,104"
print "T:t1;20,10,0,3,8;"
print "T:t2;20,20,0,3,8;"
print "T:t3;40,40,0,3,8;"
label start

line input a$

if left$(a$, 15) = "194300301480070" then
print "R t2;", mid$ (a$, 16)

endif

if left$(a$, 15) = "194300300580172" then
print "R t3;", mid$(a$, 16)

endif

if left$(a$, 15) = "194300301970073" then
print "R tl1;", mid$(a$, 16)

endif

if a$ = "Q0001" then
print "A 1"

endif

goto start

</ABC>

Here is the original Datamax DPL data stream sent from Easylabel:

M3000

<STX>d

<STX>e

<STX>f260
<STX>00220

<STX>VO0

<STX>L

D11

PA

SA

H10

Z
194300301480070Rot
19430030058017248
194300301970073Bernd
W

Q0001

E

<STX>L

D11

PA

SA

H10

Z
194300301480070gelb
19430030058017248
194300301970073Bertha
W

Q0001

E

K] 3 Examples

3.7 Usage of LCD and touch events

<ABC>
quan$ = eosnuminput$ ("Enter","Quantity","1","10")
T

sub eosnuminput$ (linel$,line2$,minlen$, maxlens$)
local inp$, x,y,delbut,backbut,cancelbut, okbut
T
open window 272,480
poke ("lcd"),1

' Frames around input fields
rectangle 8,41 to 262,439:rectangle 16,111 to 255,148

' Cancel and OK buttons
rectangle 26,379 to 121,426:rectangle 149,379 to 244,426

' Boxes

rectangle 17,170 to 93,214:rectangle 98,170 to 174,214:rectangle 179,170 to 255,214
rectangle 17,216 to 93,260:rectangle 98,216 to 174,260:rectangle 179,216 to 255,260
rectangle 17,262 to 93,306:rectangle 98,262 to 174,306:rectangle 179,262 to 255,306
rectangle 17,308 to 93,352:rectangle 98,308 to 174,352:rectangle 179,308 to 255,352

' Texts

font "Monospace, 30"

text 46,172,"1":text 127,172,"2":text 208,172,"3"

text 46,218,"4":text 127,218,"5":text 208,218,"6"

text 46,264,"7":text 127,264,"8":text 208,264,"9"

text 46,310,".":text 127,310,"0":text 208,310,chr$ (8592)
text 64,381,"X":text 180,381,"OK"

"' Title

font "Swiss, 16"
text 17,50,1inels$
text 17,67,11ine2$

' Input field

chars = ""

font "Monospace, 16"

clear fill rectangle 18,114 to 253,146
text 18,120,char$ + " "

do

X = mousex
y = mousey
inps$ = ""
delbut = 0
backbut = 0
cancelbut =
okbut = 0

0

if x >= 17 and x <= 93 and y >= 170 and y <= 214

inp$ = "1"
if x > 98 and x <= 174 and y >= 170 and y <= 214
inp$ = "2"
if x > 179 and x <= 255 and y >= 170 and y <= 214
inp$ = "3"
if x >= 17 and x <= 93 and y >= 216 and y <= 260
inp$ = "4"

if x > 98 and x <= 174 and y >= 216 and y <= 260
1np$ = ngn

Examples

if x > 179 and x <= 255 and y >= 216 and y <= 260

inp$ = "6"

if x >= 17 and x <=93 and y >= 262 and y <= 306
inp$ = "7"

if x > 98 and x <= 174 and y >= 262 and y <= 306
inp$="8"

if x > 179 and x <= 255 and y >= 262 and y <= 306
inp$="9"

if x >= 17 and x <= 93 and y >= 308 and y <= 352
delbut =1

if x > 98 and x <= 174 and y >= 308 and y <= 352
inp$ = "0O"

if x > 179 and x <= 255 and y >= 308 and y <= 352
backbut = 1

' CANCEL and OK

if x >= 26 and x <= 121 and y >= 379 and y <= 426

cancelbut = 1

if x > 149 and x <= 244 and y >= 379 and y <= 426
okbut =1

if len(inp$) > 0 then
do

X = mousex
y = mousey

if x = -1 and y = -1
break
pause 0.01
loop
char$ = char$ + inp$
clear fill rectangle 18,114 to 253,146

if len(char$) <= 22 then
text 18, 120, chars 4 "_"
else
text 18,120,right$ (chars, 22) + " "
endif
endif

if backbut = 1 and len(char$) > 0 then
do
X = mousex
y = mousey

if x = -1 and y = -1
break
pause 0.01
loop
char$ = mid$ (char$,1,len(chars$)-1)
clear fill rectangle 18,114 to 253,146

if len(char$) <= 22 then
text 18,120,char$ + " "
else
text 18,120,right$ (chars,22) + " "
endif
endif

if backbut = 1 and len(char$) > 0 then
do
X = mousex
y = mousey

Examples

if x = -1 and y = -1
break
pause 0.01
loop
char$ = mid$ (char$,1,len(char$)-1)
clear fill rectangle 18,114 to 253,146

if len(char$) <= 22 then
text 18,120,char$ + " "

else
text 18,120,right$ (chars$,22) + " "
endif
endif
if okbut = 1 and len(char$) > 0 then
do
X = mousex
y = mousey

if x = -1 and y = -1
break
pause 0.01
loop
endif
if cancelbut = 1 then
do
X = mousex
v mousey

if x = -1 and y = -1
break
pause 0.01
loop
end
endif
if okbut = 1
break
loop
close window
poke ("1cd"), 0
if okbut = 1
return char$
end sub

</ABC>

3 Examples

3.8 Database Connector

Shows the usage of Database Connector from abc.

<ABC>

poke "bypass", 1

open 1, "sgl:192.168.3.103,1001", "w"
open 2, "sgl:192.168.3.103,1001", "xr"
print #1, "SELECT * FROM Tablel WHERE ID='123'"
poke '"read controls", 1

line input #2 a$

poke "read controls", 0

close #1

close #2

print "m m"

print "J"

print "S 11;0,0,68,70,100"

print "T 10,10,0,5,ptl0;" + as$

print "A 1"

</ABC>

] 3 Examples

3.9 Testing the /0 commands with io.xin / io.xout

<ABC>

print "m m"
print "J"
print "O R, J"
print "P"

print "S 11;0,0,68,70,100"
print "T 10,10,0,5,ptl0; TEST XIN/XOUT"
print "A 1"
do
getxout ()
if (jobrdy)
break
loop
pause 0.05
poke "io.xin", "START"
do
getxout ()
if (peelpos)
break
loop
poke "io.xin", "LBLREM"
do
getxout ()
if (!peelpos)
break
loop
do
if peek ("direction") = -1
break
loop
do
if peek ("direction") = 0
break
loop
'needed, because there is a gap in the printengine
pause 1
poke "io.xin", "REPRINT"
do
getxout ()
if (jobrdy)
break
loop
pause 0.05
poke "io.xin", "START"
do
getxout ()
if (peelpos)
break
loop
poke "io.xin", "LBLREM"

Examples

sub getxout ()

local xout$, tmp$

r

xout$ = peek$ ("io.xout")

for a = 1 to len(xout$)
if mid$ (xout$,a,1l) = "Y" then
tmp$ = tmp$ 4+ nqn

else

tmp$ = tmpS$ + "0O"

endif
next a

xout$ = tmp$

ready =
= val (mid$

Jjobrdy

feedon =
perror =
ribwarn =
peelpos =
homepos =
endpos =

end sub
</ABC>

val (mid$ (xout$,1,1)
xout$,2,1)
xout$,3,1)
xout$,4,1)

)

)

val (mid$)
)
xout$,5,1))
)

)

)

val (mid$
val (mid$
val (mid$
val (mid$
val (mid$

xout$,6,1)
xout$, 7,1)
xout$,8,1)

Y 3 Examples

3.10 Last printed label as an image

This program prints a label, saves it as a PNG file and displays it on the printer's display

m m
J

H 150,0

Se;0,0,20,22,40

O J,R

T 10,10,0,5,ptl5;Hello World!
Al

<ABC>

open window 272,480

window read from "/IFFS/background.png"

font "Swiss, 16"

poke "gui.label.add", "body,5,5,261,320,"

poke "gui.button.add", "exit,180,405,85,45,Exit"
poke ("lcd"),1

if exists ("bitmap:") then
open 3,"bitmap:","rb"
open 4,"/IFFS/bitmap.png", "wb"

do
d = peek (#3)
if d <> -1 then
poke #4, chr$(d)
else
break
endif
loop

close #3
close #4

poke "gui.body.image", "/IFFS/bitmap.png"
else

poke "stdout", "No bitmap: no printed label"
endif

r

do
var$ = peek$ ("gui.event")
if (instr(var$, "exit:Click")) then
break
endif
loop
</ABC>

3 Examples

311 GUI

<ABC>

open window 272,480

window read from "/IFFS/background.png"

poke ("color#1"), dec("000000"™)

poke ("color#2"), dec ("ffffff")

poke ("color#3"), dec("999999")

poke ("fcolor"), 2

poke ("bcolor"), 3

font "Swiss, 12"

poke "gui.label.add", "1lbl,60,10,200,40,Test"

font "Swiss, 20"

poke "gui.label.add", "lnumeric,90,15,200,40,42"
poke "gui.label.add", "ldate,90,70,200,40"

poke "gui.label.add", "ltime,90,125,200,40"

poke "gui.checkbox.add", "cb,10,10,0"

poke ("fcolor"), 1

poke "gui.combobox.add", "combo,10,60,200,40,Enabled,Disabled"
poke "gui.pixbutton.add", "right,145,330,large,next"

poke "gui.pixbutton.add", "left,15,330,large,back"

poke "gui.button.add", "remove,10,110,200,40,Remove"

poke "gui.left.enabled",O

poke "gui.combobox.add", "pcombo,10,210,200,40,labels,images"
poke "gui.button.add", "open,10,260,200,40,0pen..."

combo avail = 1

poke "gui.button.add", "bnumeric,210,15,48,48,"

poke "gui.bnumeric.image", "/IFFS/images/setup cutting normal.png"

poke "gui.button.add", "bdate,210,70,48,48,"
poke "gui.bdate.image", "/IFFS/images/setup region normal.png"

poke "gui.button.add", "btime,210,125,48,48,"
poke "gui.btime.image", "/IFFS/images/setup time normal.png"

poke "gui.button.add", "binfo,210,180,48,48,"
poke "gui.binfo.image", "/IFFS/images/short status normal.png"

poke "gui.bdate.visible", 0
poke "gui.btime.visible", 0
poke "gui.binfo.visible", 0
poke "gui.bnumeric.visible", 0

poke "gui.lnumeric.visible", O
poke "gui.ldate.visible", 0
poke "gui.ltime.visible", 0

dim fields$ (6)
a = split(date$,fieldsS(),"-")
poke "gui.ldate.text", fieldsS$(3) + "." + fields$(2) + "." + fields$ (4)

a = split(time$,fieldsS(),"-")
poke "gui.ltime.text", fields$(l) + ":" + fields$(2) + ":" + fields$ (3)

Y 3 Examples

poke ("lcd"),1

current label$ = ""
do
var$ = peek$ ("gui.event")

if (instr(var$, "right:Click")) then
if (peek("gui.left.enabled") = 1) then
break
else
poke "gui.right.pixmap", "cancel"
poke "gui.left.enabled",1

poke "gui.pcombo.visible", 0
poke "gui.combo.visible", 0
poke "gui.open.visible", 0
poke "gui.cb.visible", 0
poke "gui.lbl.visible™, O
poke "gui.remove.visible", 0

poke "gui.bdate.visible", 1
poke "gui.btime.visible", 1
poke "gui.binfo.visible", 1
poke "gui.bnumeric.visible", 1

poke "gui.lnumeric.visible", 1
poke "gui.ldate.visible", 1
poke "gui.ltime.visible", 1
endif
endif

if (instr(var$, "left:Click")) then
poke "gui.left.enabled", O
poke "gui.right.pixmap", "next"

poke "gui.pcombo.visible", 1
poke "gui.combo.visible", 1
poke "gui.open.visible", 1
poke "gui.cb.visible", 1
poke "gui.lbl.visible", 1
poke "gui.remove.visible", 1

poke "gui.bdate.visible", 0
poke "gui.btime.visible", 0
poke "gui.binfo.visible", 0
poke "gui.bnumeric.visible", 0

poke "gui.lnumeric.visible", 0
poke "gui.ldate.visible", 0
poke "gui.ltime.visible", 0

endif
A}
if (instr (var$, "bnumeric:Click")) then
current label$ = "lnumeric"

val$ = peek$ ("gui.lnumeric.text")
poke "gui.numeric.show", "Numeric dialog,"+val$+",0,100,1,0"

endif
if (instr (var$, "bdate:Click")) then
current label$ = "ldate"

poke "gui.date.show", "New day?,10.10.2021"
endif

Examples

if (instr(var$, "btime:Click")) then

current label$ = "ltime"

poke "gui.time.show", "Time change?,10:10"
endif
if (instr(var$, "binfo:Click")) then

current label$ = ""
poke "gui.info.show", "Printer info,This is a great text that
describes the printer completely."

endif
if (instr(var$, "open:")) then
current label$ = "lbl"

val2$ = peek$ ("gui.pcombo.text")
poke "gui.fileopen.show","File selection," + val2$

endif
if (instr(var$, "DialogClosed:ok:")) then
if (current label$ <> "") then

var2$ = right$ (var$, len(var$)-17)
poke "gui." + current label$ + ".text", var2s

endif
endif
if (instr (var$, "combo:") = 1) then
if (instr(var$, "TextChanged:Enabled")) then
poke ("gui.cb.enabled"),1l
else
poke ("gui.cb.enabled"),O
endif
endif
if (instr (var$, "remove:")) then

if (combo avail = 1) then
combo _avail = 0
poke ("gui.combo.destroy"),0
poke "gui.remove.text", "Create"
else
combo avail = 1
poke ("gui.combobox.add"),"combo,10,60,200,40,Enabled,Disabled"
poke "gui.remove.text", "Remove"
endif
endif
loop
</ABC>

48] Examples

3.12 HTTP server query

<ABC>

open 1, "tcp:192.168.200.71,80","wb"
open 2, "tcp:192.168.200.71,80","rb"
open 3, "/dev/rawip", "w"

print #1,"GET /cgi-bin/develop HTTP/1.1\r\n";
print #1,"Host: 192.168.200.71\r\n";

print #1,"Connection: close\r\n";

print #1,"\r\n";

do
if eof (#2) > 0 then

break
endif

line input #2 myline$
print #3,myline$
loop

close #1
close #2
close #3
</ABC>

3.13 UDP server query

eof can be used to check whether the datagram has ended without triggering the reading of a new datagram.
To do this, eof (#2) must be called before peek (#2).

<ABC>

open 1, "udp:192.168.200.71,7777","wb"
open 2, "udp:192.168.200.71,7778","rb"
open 3, "/dev/rawip","w"

'Hello and World will be sent in one datagram
print #1, "Hello\nWorld\n";

do
if eof (#2) then
print #3 "FINISH"
break
else
c = peek (#2)

if ¢ <> -1 then
print #3 chr$(c);
else
print #3 "WAIT"
endif
endif
loop

close #1
close #2
close #3
</ABC>

3.14

Examples

HTTP Client

HTTP servers are connected via classic abc stream objects, i.e. data is sent to the server via an output stream and
the response is read from the server via an input stream. While the URL is part of the open call, all other config-
uration parameters are sent using poke commands. In principle, only one simultaneous request is possible. This
means that only one input and output stream can be open at a time. Closing the stream resets the configuration set
via poke. After receiving EOF on the input stream, the HTTP operation is complete and the response code can be
queried using a peek command. Only then can the streams be closed.

<ABC>
poke "http.method", "POST"
poke "http.auth","digest"

poke "http.userpwd","admin:
)

open 3,"http://192.168.200.
open 4,"http://192.168.200.
open 5,"/IFFS/drucker.txt",

print #3 "cmd=2&id=ID HEAT

do
x = peek (#4)
if x <> -1 then
poke #5, chr$ (x)
else
if eof (#4) then

admin"
71/cgi-bin/set","w"
71/cgi-bin/set","r"

"wb"

LEVEL&value=2&tree i1id=ID SETUP"

poke "stdout", "EOE"

break
endif
endif
loop

close #3
close #4
close #5
</ABC>

When using poke http.store, the input stream cannot be read and doesn't deliver any data because the server's
response data is sent directly to the specified file. The eof query remains valid and is required to complete the

request.

<ABC>

poke "http.store", "/IFFS/gaga.png"
open 3,"https://127.0.0.1/gaga.png","rb"

do
if eof (#3) then
poke "stdout", "EOF"
break
endif
loop

rc peek ("http.rc")
v$S = "HTTP RC=" + str$(rc)
poke "stdout", v$

close #3
</ABC>

50] Examples

3.15 OPC-UA

This sample shows how to handle with OPC-UA functions and print a label with information from them.

<ABC>

poke "opcual.userpwd", "opcuser:opcpass"
poke "opcualO.url","192.168.16.116:4840"
poke "opcual.rc",1

]

operatingtime$ = str$ (peek ("opcual:2:DeviceSet,3:Printer,3:Statistics,3:0perating
Time") / 60)
operatingtime$ = left$ (operatingtime$, instr (operatingtime$, ".") - 1)

]
print "m m"
print "zO"
print "J"
print "S 11;0,0,48,51,90"
print "H 100,0,T,RO,BO"
print "O R,P"
print "T73,4,0,5,3,b,k;abc OPC UA sample"
print "T4,8,0,3,2.5,k;Manufacturer: ",
peek$ ("opcual:2:DeviceSet, 3:Printer, 2:Manufacturer")
print "T4,12,0,3,2.5,k;Machine: ", peek$ ("opcual:2:DeviceSet,3:Printer,2:Model")
print "T4,16,0,3,2.5,k;Firmware: ",
peek$ ("opcual:2:DeviceSet, 3:Printer, 2:SoftwareRevision")
print "T4,20,0,3,2.5,k;Serial: ",
peek$ ("opcual:2:DeviceSet, 3:Printer,2:SerialNumber")
print "T4,24,0,3,2.5,k;Total labels: ",
peek$ ("opcual:2:DeviceSet, 3:Printer,3:Statistics, 3:Labels")
print "T4,28,0,3,2.5,k;0perating time: ", operatingtime$, " h"
print "T4,32,0,3,2.5,k;Thermal direct: ",
str$ (peek ("opcual:2:DeviceSet,3:Printer, 3:Statistics, 3:Thermal Direct") / 1000), " m"
print "T4,36,0,3,2.5,k;Thermal transfer: ",
str$ (peek ("opcual:2:DeviceSet, 3:Printer,3:Statistics,3:Thermal Transfer") / 1000), " m"
print "T4,40,0,3,2.5,k;Printhead model: ",
peek$ ("opcual:2:DeviceSet, 3:Printer, 2:SubDevices, 3:TPH 1,2:Model")
print "T4,44,0,3,2.5,k;Printhead serial number: ",
peek$ ("opcual:2:DeviceSet, 3:Printer, 2:SubDevices, 3:TPH 1,2:SerialNumber")
print "T45,8,0,3,2.5,k;Status: ",
peek$ ("opcual:2:DeviceSet, 3:Printer, 3: Interpreter, 3:ESCs")
print "T45,12,0,3,2.5,k;XStatus: ",
peek$ ("opcual:2:DeviceSet, 3:Printer, 3: Interpreter, 3:ESCz")
print "T45,20,0,5,2.5,k;Setup settings: "
print "T45,24,0,3,2.5,k;Print speed: ", str$ (peek ("opcual:ns=4;s=ID PRINT SPEED")), " mm/s"
print "T45,28,0,3,2.5,k;Heat level: ", peek$ ("opcual:ns=4;s=ID HEAT LEVEL")
print "T45,32,0,3,2.5,k;Print position X: ",
str$(peek("opcuaO:ns:4;s:ID_PRINT_POSITION_X"))
print "T45,36,0,3,2.5,k;Print position Y: ",
str$(peek("opcuaO:ns:4;s:ID_PRINT_POSITION_Y"))
print "A 1"
]

' Set print speed and heat level

poke ("opcual:ns=4;s=ID PRINT SPEED"), 150
poke ("opcual:ns=4;s=ID HEAT LEVEL"), "5"
</ABC>

4 Library

In this chapter you will find a list of functions frequently used when you develop abc programs.

4.1 GetPrinterModel$

LI b b i b b b b g i b b b b b b b i b i b b b b b b i b b b b b b b i b i b b b g b b i b b b b b b b i b b b i b b b g b b b b i

'* Function: GetPrinterModelS5 ()

'* Author: DS 19/04/2007

"# Description: Get the model of printer (A3, A4d+...)
'* Parameters: -

"# Result: string containing the printer model

T .
* Changes: =
T ok ok ok b ok 5k ok oF ok ok ok ok b b ok ok ok b b ok ok ok b b ok ok ok b b ok ok ok b b ok ok ok ok b ok ok ok b b ok ok ok b b ok ok ok b b ok ok ok b b ok ok ok b b ok ok ok b b ok ok ok ok o ok

sub GetPrinterModel$ ()
local Varl$

Varl$ = peek$ ("machine")
Varl$ = mid$ (Varl$, 0, instr (Varl$, "/"))

return Varl$

end sub

LI b b b b b b b b b g b b b b b b b e b b b b b b g b b b b b b b e b b b b b b b g b b b b b g b b b b i b g b b b b g b g b b b b g b

4.2 GetCPUType$

LI b b b b b b b b g b b b b b b b b i b b b b b b b b b b b b b b e b i b b b b b b b b b b b b b b b b i b g b b i b g b g b b b g

'* Function: GetCPUTypeS ()

'* Author: DS 19/04/2007

"*# Description: Get the CPU type (Ax, M4, X2, X3 or X4)
'* Parameters: =

'* Result: one of the following string:

" X4L (for MACH 4S, HQ, PXQ) (90° turned display)
" X4 (for SQUIX, E0S2/5)

I X3 (for EOS)

& X2 (for A+, H+, Mach, PX, XC, XD)

ves Ax (for A-Series, Hermes A)

T % M4

"*# Changes: 03/04/2017 added X4 (for SQUIX-Series)
" 19/12/2017 added X4L (for MACH 4S)

LI b b b b b b b b b g b b b b b b b b b i b b b b b b b b b i b b b b i b b i b b b g b b i b g i b b b b i b g b b b b g b b b b b b b g b

sub GetCPUTypes ()
local PrinterModel$
PrinterModel$ = GetPrinterModels$ ()

if (instr (PrinterModel$, "MACH 4S")) or (instr (PrinterModel$, "HERMES Q"))
or (instr (PrinterModel$, "PX Q")) then
return "X4L"
elsif (instr (PrinterModel$, "SQUIX")) or (instr (PrinterModel$,"EOS2"))
or (instr (PrinterModel$,"EOS5")) then
return "X4"
elsif instr (PrinterModel$, "EOS") then
return "X3"
elsif ((instr (PrinterModel$,"+")) or (instr (PrinterModel$,"Mach")) or
(instr (PrinterModel$, "PX")) or (instr (PrinterModel$,"XD")) or
(instr (PrinterModel$, "XC")) or (instr (PrinterModel$,"Hermes C"))) then
return "X2"

elsif (PrinterModel$ = "M4") then
return "M4"
else
return "Ax"
endif
end sub

LI b b b b b b b b b g b b b g b b b b b i b b b b b b i b b b b b b i b i b b b b b b b b g b b b b i b g b b b b g b g b b b b b g b

520 Library

4.3 OpenDisplay

<ABC>

LI b g b b b g g
"* Function: OpenDisplay ()

'* Author: DS 22/03/2010

'"*# Description: open the printer display

'* Parameters: =

'* Result: Boolean true or false

"* Changes: =
LI b e b

sub OpenDisplay ()
if isDisplayOpened
return true

CPUType$ = GetCPUTypes$ ()

'according to the CPU the screen size is not the same

if CPUType$ = "M4" then
return false

elsif CPUType$ = "Ax" then
open window 120, 32

elsif CPUType$ = "X2" then
open window 128, 64

elsif CPUType$ = "X3" then
open window 160,255

elsif CPUType$ = "X4" then
open window 272,480

elsif CPUType$ = "X4L" then
open window 480,272

else
return false

endif

poke "lcd", 1
isDisplayOpened = true
return true

end sub

LI b b b b b b b b b b b b b b b b b b b e b b b b b b b b b b b b b b b e b e b b b b b b b b b b b

</ABC>

4.4 ClearDisplay

LI b e b e b b b b b b b e b b b e b b b b b b b b b b b b b b b b b b b e b e b b b b b e b

'+ Function: ClearDisplay ()

"* Author: DS 22/03/2010

"*# Description: clear the content of the display
'* Parameters: =

'"* Result: Boolean true or false

"* Changes: =
Tk 5k 5k b ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok b ok b ok ok ok
sub ClearDisplay ()
if isDisplayOpened then
clear window
return true
endif

return false
end sub

LI b e b b b b b e b b b b b b b b b b b e b b b b e b b e b b b b b b b b b e b P e b b b b b b b b b b b b b b b b b e b b e b g b b b b b b b e

4 Library

4.5 CloseDisplay

T ok 5k ok b ok b ok ok b ok ok ok ok

'* Function: CloseDisplay ()

"+ Author: DS 22/03/2010

"* Description: close the printer's display
'* Parameters: =

"* Result: Boolean true or false

"* Changes: =
L b i b b b b b b b b b b b b b b g b b b b b b b b g b b b b g b g i
sub CloseDisplay ()
if isDisplayOpened then
isDisplayOpened = false
close window
poke "lcd", 0
return true
endif

return false
end sub

T ok 5k ok

4.6 DisplayText$

LI b e b b b b e 2 b b b b b b e b b b b b b b b b b b e b b b b b b b e e b b b e b b b b b b b b b b b b b b b b b g b b e b b b b b b b e b i

'"* Function: DisplayTexts$

"*# Author: DS 04/10/2007

"*# Description: display 4 text lines at the printer display during a given time
y This function uses other functions

'* Parameters: linel$: string => first text line

0 line2$: string

0 1line3$: string

0 line4$: string

Ve DisplayTime: integer => wait time before the display is released
"* Result: =

"* Changes: =
LI b g b b b b b b i
sub DisplayText$(linel$, 1line2$, 1line3$, line4d$, DisplayTime)
OpenDisplay ()
if CPUTypeS$ = "M4"
return

" if you are using Ax or X2 CPU, please delete the following two lines
if CPUType$ = "X3" or CPUType$S = "X4" or CPUType$ = "X4L"
font "Monospace, 20"

text 0, 0, linel$
text 0, 16, line2$

' we can display more than 2 lines only on newer printers
if CPUType$ <> "Ax" then

text 0, 32, line3$

text 0, 48, line4ds$
endif

wait DisplayTime
CloseDisplay ()
end sub

U b e e b e b b b b i b b b b b b b b b b i b b i b i i P b i b i b b b b b b b i b b b i b b b b b i b b b b b P b b b b b b b b g b b 4

5410

Library

4.7 CheckStatus

T 5k ok ok ok ok ok ok b ok b ok ok ok ok ok ok ok ok A

'*# Function: CheckStatus ()

'* Author: DS 23/03/2010

'* Description: check the printer status

'* Parameters: -

'* Result: Boolean true or false if the printer is in error

'* Changes: =
T 5k 5k ok b ok ok ok b ok ok ok b ok ok ok b ok ok ok b
sub CheckStatus ()
'no error or printhead opened without print job
if (mid$ (peek$ ("status"), 2, 1) = "-") or (mid$ (peek$ ("status"), 1, 2) = "YDOOOOOON") then
return true
else
return false
endif
end sub

T 5k ok ok ok ok ok ok b ok b ok b ok ok ok ok ok b ok ok ok ok bk ok ok A

4 Library

4.8 PromptText$

cstEnter = 13
cstEscape = 27
cst0 = 48
cst9 = 57
cstA = 65
cstZ = 90
cstaa = 97
cstzz = 122
cstEnd = 61453
cstArrowlLeft = 61472
cstArrowRight = 61473
cstArrowUp = 61474
cstArrowDown = 61475
cstNumeric =0
cstAlpha =1
cstAlphanum = 3

r

' on X3 CPU, some keyboard codes are not the same

GetCPUTypes$ ()
if CPUType$ = "X3" then
cstBackspace = 8
else
cstBackspace = 61449

T ok 5k ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok b ok ok ok ok ok o ok ok ok ok ok ok ok b ok ok ok ok ok b ok ok ok ok ok ok ok ok ok ok ok ok ok o ok b ok ok ok ok ok ok ok ok ok ok okt

' Function: PromptTexts$
' Author: DS 07/03/2005
' Description: display a text on the printer's display, prompt a default value,

! limit the user input and returns the text entered by the user
! This function uses other functions like GetCPUType$S
' Parameters: textlS: string => first line on display
! text2S$: string => second line
! test3S$: string => third line
! text4S: string => fourth line
! length: integer => max input length
! chartype: string => type of char the user can type in (numeric, alpha or alphanum)
' Result: -
' Changes: 03/04/2017 added support for SQUIX-Series
LI e b b b b b b i b b b b b b g i b b b b i b b b b b b b i b b e b b b b b b b g b b i b b b b g b b i b b i b b e b b b b b i b i b b
sub PromptText$ (textl$, text2$, text3$, textd$, length, chartype)
local Varl$, x, charvalid

open 1,"/dev/keyboard","r"
OpenDisplay ()
ClearDisplay ()

" if you are using Ax or X2 CPU, please delete the following two lines
if CPUType$ = "X3" or CPUType$ = "X4"
font "Monospace, 20"

text 0,0, textl$
text 0,16, text2$

' we can display more than 2 lines only on newer printers
if CPUType$ <> "Ax" and CPUType$ <> "M4" then

text 0,32, text3$

text 0,48, text4ds

Varls = text4s$

T 4 Library

else
Varl$ = text2$
endif
do
do
x = peek (#1)
if x <> -1
break
wait 0.1
loop

'enter pressed => quit the loop
if x = cstEnter
break

switch x
'escape pressed => quit the program
case cstEscape:
case cstEnd:
poke "lcd", 0
close 1
return chr$ (cstEscape)
break

'backspace pressed => we delete the last char
case cstBackspace:

Varl$ = left$ (Varl$, len(Varl$S) - 1)

clear window

text 0,0, textl$

' we can display more than 2 lines only on newer printers
if CPUType$ <> "Ax" and CPUType$ <> "M4" then
if (text3$ <> "") then
text 0,16, text2$
text 0,32, text3$
text 0,48,Varl$
else
text 0,16, text2$
text 0,32,Varl$
endif
else
text 0,16,Varl$
endif
:break

case cstArrowUp:

case cstArrowDown:

case cstArrowLeft:

case cstArrowRight:
break

'another key was pressed => display the text
default:
if (len(Varl$) < length) then
charvalid = false

Library

switch chartype
case cstNumeric
if (x >= cst0) and (x <= cst?9)
charvalid = true
break
case cstAlpha
if ((x >= cstA) and (x <= cstZ)) or ((x >= cstaa) and (x <= cstzz))
charvalid = true
break
default
charvalid = true
break
end switch

if charvalid then
Varl$ = Varl$ + chr$ (x)

' we can display more than 2 lines only on newer printers
if CPUType$ <> "Ax" and CPUType$ <> "M4" then
if (text3$ <> "") then
text 0,16, text2$
text 0,32, text3$
text 0,48,Varl$
else
text 0,16, text2$
text 0,32,Varl$
endif
else
text 0,16,Varl$
endif
endif
endif
break
end switch
wait 0.1
loop

close 1

CloseDisplay ()

return Varl$
end sub

LI b e b b b b e b b b b e b b b b b b b b b b b e b b e b b b b b b b b b b b e b b b b b b b b b b e b b b b e b b b b e b b b b g b g b g 4

Germany

cab Produkttechnik GmbH & Co KG
Karlsruhe

Tel. +49 721 6626 0

www.cab.de

France

cab Technologies S.a.r.l.
Niedermodern

Tel. +33 388 722501
www.cab.de/fr

c—

we Aa’e«/;@ rore

USA

cab Technology, Inc.
Chelmsford, MA

Tel. +1 978 250 8321
www.cab.de/us

Mexico

cab Technology, Inc.
Juarez

Tel. +52 656 682 4301
www.cab.de/es

Taiwan

cab Technology Co., Ltd.
Taipei

Tel. +886 (02) 8227 3966
www.cab.de/tw

China

cab (Shanghai) Trading Co., Ltd.

Shanghai
Tel. +86 (021) 6236 3161
www.cab.de/cn

Singapore

cab Singapore Pte. Ltd.
Singapore

Tel. +65 6931 9099
www.cab.de/en

South Africa

cab Technology (Pty) Ltd.
Randburg

Tel. +27 11 886 3580
www.cab.de/za

	1	Introduction
	1.1	Instructions
	1.2	Overview
	1.3	JScript vs abc
	1.4	Requirements
	1.5	Restrictions

	2	Instruction types
	2.1	Paths
	2.2	Window-Handling
	2.2.1	open window
	2.2.2	window transfer to
	2.2.3	window transfer from
	2.2.4	window read from
	2.2.5	window write to
	2.2.6	clear window
	2.2.7	close window

	2.3	Peek variables
	2.4	Poke variables
	2.5	Streams
	2.6	Graphical User Interface
	2.6.1	Object creation
	2.6.2	Object properties
	2.6.3	Dialogs
	2.6.4	Images
	2.6.5	Events

	2.7	Special commands
	2.7.1	Erase
	2.7.2	Exists
	2.7.3	Flush
	2.7.4	Font
	2.7.5	On interrupt break
	2.7.6	On interrupt continue
	2.7.7	Sound

	3	Examples
	3.1	Ruler
	3.2	Rotated text
	3.3	Label distance measurement
	3.4	Reading keyboard codes
	3.5	Writing to serial port
	3.6	Reading and parsing data
	3.7	Usage of LCD and touch events
	3.8	Database Connector
	3.9	Testing the I/O commands with io.xin / io.xout
	3.10	Last printed label as an image
	3.11	GUI
	3.12	HTTP server query
	3.13	UDP server query
	3.14	HTTP Client
	3.15	OPC-UA

	4	Library
	4.1	GetPrinterModel$
	4.2	GetCPUType$
	4.3	OpenDisplay
	4.4	ClearDisplay
	4.5	CloseDisplay
	4.6	DisplayText$
	4.7	CheckStatus
	4.8	PromptText$

